Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Clifton E. F. Rickard

Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail:
c.rickard@auckland.ac.nz

Key indicators

Single-crystal X-ray study
$T=203 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.022$
$w R$ factor $=0.052$
Data-to-parameter ratio $=16.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Dinitratodioxobis(4-picoline N-oxide)uranium(VI)

The title compound, $\left[\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$, has a centre of symmetry. This is the first uranyl complex of a simple monodentate N-oxide ligand to be structurally characterized.

Comment

Although aromatic N-oxide complexes of uranium(VI) have been known for some time (Ahuja \& Singh, 1973, and references therein), few have been structurally characterized. Those that have been structurally characterized invariably have a second donor group attached to the aromatic ring giving bidentate ligands. One such example is ($2,2^{\prime}$-bipyridine N, N^{\prime}-dioxide)dinitratodioxouranium(VI) (Alcock \& Roberts, 1987) in which the uranium is eight-coordinate via two bidentate nitrate groups, two N -oxide O atoms and the two oxo ligands.

(I)

The title compound, (I), is eight-coordinate, with a hexagonal bipyramidal geometry. The U atom lies on a centre of symmetry, dictating a trans arrangement of the N-oxide ligands unlike the $2,2^{\prime}$-bipyridine N, N^{\prime}-dioxide complex where a cis arrangement is dictated by ligand constraints. The NO_{3} groups are bound slightly asymmetrically, with $\mathrm{U}-\mathrm{O}$ bonds of 2.518 (3) and 2.544 (3) A. These are significantly longer than the $\mathrm{U}-\mathrm{O}$ (N-oxide) bonds of 2.376 (3) \AA. These values are comparable to those found in the $2,2^{\prime}$-bipyridine N, N^{\prime}-dioxide complex of 2.513 (18) and 2.378 (14) \AA (Alcock \& Roberts, 1987). The $\mathrm{U}=\mathrm{O}$ distance is 1.769 (3) \AA, which is typical of values found in uranyl complexes. There are no significant intermolecular interactions.

Experimental

The title complex was prepared by mixing solutions of $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and 4 -picoline N -oxide in ethanol in a 1:2 molar ratio. Crystals of (I) were obtained by recrystalization from ethanol.

Crystal data

$\left[\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$	$D_{x}=2.283 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=612.30$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 6110
$a=7.9772(2) \AA \AA$reflections $b=13.5738(2) \AA$	$\theta=2-26^{\circ}$
$c=8.2288(2) \AA$	$\mu=9.17 \mathrm{~mm}^{-1}$
$\beta=91.583(2)^{\circ}$	$T=203(2) \mathrm{K}$
$V=890.68(3) \AA^{3}$	Prism, yellow
$Z=2$	$0.32 \times 0.26 \times 0.22 \mathrm{~mm}$

Data collection

Siemens SMART diffractometer
Area-detector ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.088, T_{\text {max }}=0.133$
8841 measured reflections
1750 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$k=0 \rightarrow 17$
1998 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0153 P)^{2}\right. \\
& +1.8153 P]
\end{aligned}
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.058$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.65 \mathrm{e}^{-3}$
$w R\left(F^{2}\right)=0.052$
$S=1.24$
1998 reflections
125 parameters
H -atom parameters constrained
$l=0 \rightarrow 10$

Table 1
Selected bond lengths (\AA).

$\mathrm{U}-\mathrm{O} 1$	$1.769(3)$	$\mathrm{O} 2-\mathrm{N} 1$	$1.272(5)$
$\mathrm{U}-\mathrm{O} 5$	$2.376(3)$	$\mathrm{O} 3-\mathrm{N} 1$	$1.269(5)$
$\mathrm{U}-\mathrm{O} 2$	$2.518(3)$	$\mathrm{O} 4-\mathrm{N} 1$	$1.214(5)$
$\mathrm{U}-\mathrm{O} 3$	$2.544(3)$		

The data collection nominally covered over a hemisphere of reciprocal space, by a combination of three sets of exposures; each set had a different φ angle for the crystal and each exposure covered 0.3° in ω. Crystal decay was monitored by repeating the initial frames at the end of data collection and analyzing the duplicate reflections. H atoms were placed geometrically and refined with a riding model (including free rotation about the methyl C-C bonds), and with $U_{\text {iso }}$ constrained to be 1.2 (1.5 for the methyl group) times $U_{\text {eq }}$ of the carrier atom.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to

Figure 1

The structure of (I) showing 50\% probability displacement ellipsoids. H atoms have been omitted.
refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97.

References

Ahuja, I. S. \& Singh, R. (1973). J. Inorg. Nucl. Chem. 35, 561-566.
Alcock, N. W. \& Roberts, M. M. (1987). Acta Cryst. C43, 476-478.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1994). SHELXTL. Siemens Analytical Instruments X-ray Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

